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Dynamics of confined liquids under shear
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Shear thinning of confined liquids is studied in the framework of the time-dependent Ginzburg-
Landau equation coupled to a shear-induced velocity field. A scaling relationship between the effective
viscosity and the shear rate is analytically derived with an exponent that depends on the velocity profile
within the liquid and on the boundary conditions. Thinning is observed for shear rates faster than typical
liquid relaxation rates. Relevance to existing systems and predictions amenable to new experiments are

discussed.

PACS number(s): 68.45.—v, 47.27.Lx, 47.50.+d

I. INTRODUCTION

Understanding the properties of liquids in contact with
solid surfaces has been a long standing problem with
relevance to a broad range of technological questions as
well as to basic issues in theories of interfaces [1,2].
Changes in the nature of liquids at the liquid-solid inter-
face have been observed experimentally and through
molecular dynamics calculations. While the peculiarities
of the changes in liquid structure near surfaces are quite
well documented and understood, much less is known
about the dynamical behaviors of liquids under shear
[1-4].

In this paper, we concentrate on confined liquids under
shear, a problem known as the Couette flow. There has
been a revival of interest in this problem, which directly
reflects on the fields of tribology and on the general as-
pects of fluid rheology, following some intriguing experi-
mental results on thin films [3,4]. The latter have stimu-
lated detailed molecular dynamic studies [5—7] and some
general theoretical arguments [8]. The main features ob-
served experimentally and through calculations have
been (a) structural inhomogeneities induced by the sur-
faces (layering), (b) substantial increase of the effective
viscosity 7. relative to the bulk, and (c) a non-
Newtonian behavior that displays a flow-dependent
effective viscosity [4]

Neg~ (V)™ %, (1)
where 7 is the shear rate, y =V /d; V being the shear ve-
locity and d the film thickness. The scaling in Eq. (1) cor-
responds to what is known as shear thinning, namely
reduction of the initial effective viscosity with the in-
crease of the shear rate. The reported values of the ex-
ponent a have been around a =1, although higher values,
a=1, have been also observed [4].
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Previous studies have focused on molecular dynamics
calculations [5-7] and have contributed important mi-
croscopic scale information. Here we introduce a
theoretical approach to describe the shear-induced prop-
erties of confined liquids, which is based on the coupling
between the time-dependent Ginzburg-Landau (TDGL)
equation for the order parameter S(r,z) and a velocity
field [9,10]. The nature of the velocity field can be dictat-
ed, as an example, by the Navier-Stokes equation, or can
mimic some known behavior related to the structure of
the confined liquid. The approach is the extension, to in-
clude dynamics, of studies of the Landau-Ginzburg equa-
tions for equilibrium properties of confined liquids
[10,11]. What we obtain is an analytical derivation of Eq.
(1) with an exponent «a, which depends on the velocity
profile and on the boundary conditions. We emphasize
that our approach is not an atomistically realistic
description of the system but we rather derive a reason-
able continuum description that holds for a large class of
systems independent of molecular details.

II. THE MODEL

We consider two walls separated by a liquid film. The
planes z=0 and z =d are chosen to coincide with the
wall surfaces. A flow is generated in the liquid by moving
the bottom wall at a constant velocity V in the direction
along the axis y. In order to describe the dynamics under
shear, we start from the TDGL equation for the local or-
der parameter S(r,t)

9
at

where T is the kinetic coefficient, which describes the re-
laxation of the order parameter, v(r,t) is the local veloci-
ty, and u(r,?) is the local chemical potential, which is ex-
pressed as

S(r,t)=—Tu(r,t)—V-[S(r,t)v(r,1)], ()

_ SH{S
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Here H{S} is the Ginzburg-Landau type free-energy
functional
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where a and T are positive coefficients. As we aim at a
general continuum description, the order parameter may
mimic liquid density, polarization of liquid molecules,
their orientation, local number of near neighbors, etc.
The effect of the substrate on the liquid structure is intro-
duced by adding surface terms to the free energy of the
system

H,(S)= 3 [drd(z—z),[—h,(R—8,,V1)S(r,1)

i=1,2
+ic,S¥r,t)+ -1, ()

where z; =0 and z,=d and R=(x,y). A similar model,
with uniform interactions 4; along the interfaces has been
used to study wetting phenomena [12]. The free-energy
functional in Eq. (5) introduces the preferred value of the
order parameter at the surface, S(z =z;,,R)=h;(R)/C;,
i=1,2. The values of the parameters h,/a and C;/a
determine the equilibrium state at the interface [12].
Here we take into account the lateral nonuniformity of
the liquid-solid interactions, which plays an essential role
in the dynamics of confined liquids. The importance of
this new aspect has been emphasized in recent molecular
dynamic calculations [5-7]. As an example, we assume
periodically varying liquid-substrate interactions along
the interfaces, #;(R)=h sin(2my /I).

The calculations have been done for the quadratic form
of the free-energy, Eq. (4), which is simple to handle but
yet rich enough to lead to shear-induced effects. In this
case, the parameters (a /7)'/? and 1/(I'r) are the correla-
tion length and relaxation time in the liquid.

The boundary conditions for the order parameter
S(r,t) at the two walls, the movable and fixed follow from
the Egs. (4) and (5) for the free energy and are

agaz—S(z=0,R,t)=ClS(z=0,R,t)—hI(R—Vt), ©
a%S(z=d,R,t)=—CZS(Z=d,R,t)+h2(R) . (7)

In order to study the dynamics of the order parameter,
one needs the velocity distribution in the liquid film. We
assume that the liquid is incompressible and that the ve-
locity obeys the modified Navier-Stokes equation, with
viscosity 7, which includes the force associated with a lo-
cal stress created by the inhomogeneous order parameter
[9]. For the velocities within the liquid, we use the stick
boundary conditions. It should be emphasized that con-
sidering the Navier-Stokes equation should be viewed
only as an example of how velocities can be coupled to
the liquid order parameter (although molecular dynamic
studies in thin films [5], which show that 7 7const, still
exhibit a Navier-Stokes-like behavior of the velocity
field). The approach is more general, as will be shortly
shown, and different velocity distributions can be de-
duced from other equations relevant to the problem.

The frictional force per unit area, F, which is the ex-
perimental observable, can be found from the energy bal-
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ance in the system. Equation (2) for the order parameter
and the Navier-Stokes equation lead to the following ex-
pression for the frictional force

1
F =
VL2

z=0

lnde[v(VvH—(vV)v]

—a [dR %S(z =0,R,?)

a _
atS(z—-O,R,t) ’ ,

(8)

where L? is the surface area. The first term in Eq. (8) de-
scribes the usual viscous friction at the solid-liquid inter-
face and the second term gives an additional contribution
associated to the dynamics of ordering in the liquid film.
Below we focus on the latter contribution, which depends
strongly on the liquid-substrate interaction and on the
thickness of the film. The effective viscosity of the
sheared liquid film 7.4 is defined [3,4] as n.=Fd /V. Ex-
perimentally it has been observed that 7.4 of confined
liquids is usually ~ 10*), which means that the second
term in Eq. (8), on which we concentrate, dominates.
The main effect here is a boundary effect, which induces
some structure in the confined liquid represented by the
order parameter. In the limit of d — o, where there is no
boundary effect, one recovers the bulk behavior, in which
only the first term in Eq. (8) contributes and the order pa-
rameter is zero.

Equation (2) has to be solved self-consistently with the
equation for the velocity field. In the case of zero force,
associated with the order parameter, the solution of
Navier-Stokes equation with no-slip boundary conditions
gives a linear velocity distribution in the film. Both
molecular dynamics simulations [5-7] and perturbation
theory with respect to that force [13] show that flow near
solid boundaries depends on the strength of the wall-
liquid interaction. For strong interactions, of interest in
the present paper, the liquid layers adjacent to the two in-
terfaces may be partially locked to the solid walls and the
velocity profile is close to linear between these layers
[5-71.

We do not solve the problem self-consistently, but in-
stead present the results of an approximate solution for
two limiting velocity distributions. Based on the con-
siderations given above, we have chosen the following
two distributions: (1) a linear one that is reasonable for
thick enough “liquidlike” films and (2) a step-wise distri-
bution (v=V for z=d /2 and v=0 for z>d /2), which
simulates velocity profile in thin ‘“solidlike” films. In
both cases the problem is solved analytically. For this
purpose, it is convenient to Fourier transform the order
parameter S(r,z)—S(z,K,w). The solutions are ex-
pressed in terms of two dimensionless parameters

12
u=d/l; and g=o(rT)"1—L 9
a/T

where [ .=[(7/a)+K?]71/? is the effective length that
characterizes the lateral nonuniformity of the liquid film

caused by the “bulk” fluctuations of the order parameter
and by nonuniformity of the liquid-substrate interactions.



51 DYNAMICS OF CONFINED LIQUIDS UNDER SHEAR

In contrast to the equilibrium properties that are deter-
mined mostly by the vertical nonuniformity of liquid
films [11], the energy dissipation in our dynamical system
is affected by the lateral nonuniformity. For the particu-
lar sinusoidal choice mentioned above, with period /, of
the liquid-solid interaction one obtains K =2m/l and
o=—(K-V). The parameter u is the ratio of the
transversal length d and the lateral length /.4 and the pa-
rameter g is proportional to the ratio of the liquid relaxa-
tion time (I'7) ! and the characteristic time of the wall
motion //V. The parameter g in Eq. (9) is proportional
to the shear rate ¥ and can be rewritten as g=y /7y,

J
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where y,=alT'/(2mdl%;) and characterizes the relaxa-
tion rate in the liquid. Within our model, the rate y, is
related to relaxation of some lateral structure.

Linear velocity distribution (liquidlike film)

The solution of the dynamic equation for the Fourier
component of the order parameter is expressed in terms
of Airy functions and leads to the following asymptotic
behavior for the effective viscosity at low and high shear
rates (see Appendix A)

Ph2dl, Lu7H8+1)72% at y/y,<<1
= % _ _ — 10
N 221 2 N wa+in3 (39 1727 19
VAP | o 65— T2 : at y/yo>1.
W32 | 7, T “7o

Equation (10) demonstrates that the viscosity reaches its
maximum value at low shear rates and remains almost
constant in this region (y /7, <<1); in the high shear rate
limit (y /7> 1) the viscosity exhibits shear thinning ac-
cording to Eq. (1) with a characteristic exponent, «,
which depends on the parameter §=Cl4/a. For 8 <<1,
we obtain a=1$% while for §> 1 we obtain in the region of
intermediate asymptotics (1=<y /y,<u&%) a=21 as ob-
served in experiments and in molecular dynamics simula-
tions [4,5]. It should be pointed out that our calculations
assume a constant film thickness, while the Z power law
observed in experiments and simulations corresponds to
the condition of constant normal pressure. However, the
experiments were unable to detect a variation of the layer
thickness with shear rate and similar results for the ex-
ponent were obtained in simulations for the constant
thickness [4,5]. The dependence of the effective viscosity
on the shear rate calculated over a broad range of y
values for different values of the parameter § is shown in

Fig. 1. Our calculations also show that the effective
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FIG. 1. Log-log;o representation of the reduced effective
viscosity as a function of the reduced shear rate obtained for
liquidlike films with the thickness d =4l and (a) §=10, for
which a= %, and (b) §=0.1, for which a=1%.

viscosity of the liquidlike films only slightly depends on
the thickness d, demonstrating power-law dependence.

Step-wise velocity distribution (solidlike film)

For the step-wise velocity profile, which represents two
locked regions, we arrive at the following asymptotic
behavior:

232 473
T°h*dl g y
T gyap 0T e
1 at y/y,<<1

X V27 /70) 3% at y/pe>>1 ()

As before, the viscosity reaches its maximum value at low
shear rates and exhibits shear thinning in the high shear
rate limit. In contrast to the liquidlike films, the charac-
teristic exponent here is =2 and is independent of the
parameter §. The dependence of the effective viscosity on

the shear rate for the solidlike films is presented in Fig. 2.

| T T T T m

O -

:"__]_ .
g; (a)

& -2 .

~

8\0,_3_ (b) —

S 4r 7

T ! | I 1 ]

-1 (¢] | 2 3 4

log(y/¥,)

FIG. 2. Loglog,, representation of the reduced effective
viscosity as a function of the reduced shear rate obtained for
solidlike films with the thickness d =2/ and (a) =10 and (b)
8=0.1. In both cases a=2.
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1.0 T T T Eq. (2) and the Navier-Stokes equation. The velocity

profile itself may change with the shear rate. Here we

g 0.8 N presented only the approximate solution of the equations,

gL oel | which holds for the given velocity profiles. The self-

& (@) consistent solution may still change the values of the ex-
£ 041 - ponent.

&= (b) The experimental observation [4] of a strong depen-

021 B dence of 7. on thickness for very thin films can be ex-

0.0 | | | 1 ) , plained under the assumption that the step-wise velocity

' 3 4 5 6 7 8 distribution is applicable. With the increase of the thick-

d/ left ness, the velocity distribution changes to the linear profile

FIG. 3. Variation of the reduced effective viscosity of solid-
like films with the reduced thickness at low shear rates for (a)
8=10and (b) §=0.1.

Equation (11) is characterized by an exponential depen-
dence of the effective viscosity of a solidlike film on its
thickness (see Fig. 3). We note that the step-wise velocity
distribution may be appropriate for the description of ul-
trathin surface layers in which the molecules are chemi-
cally attached to the surfaces, a case that has been recent-
ly studied experimentally [14]. In this case, we have a
definite plane of slippage as assumed in the model dis-
cussed above. Experimental studies indicate that under
high pressures ultrathin layers of liquids also show solid-
like behavior [14].

III. DISCUSSION

The results in Eqgs. (10) and (11) demonstrate that shear
thinning is a quite general phenomenon and does not de-
pend on the details of intermolecular interactions in the
liquid and between the liquid and the substrate. The
non-Newtonian behavior arises when the relaxation time
of the liquid structure induced by the interaction with the
laterally nonuniform interfaces becomes larger than the
time at which the wall passes the length characterizing
the lateral ordering, namely g =7 /y,> 1. The value of
the exponent @, the maximum value of the effective
viscosity, and the magnitude of critical shear rate 7. at
which the non-Newtonian behavior starts, depend on the
properties of the system: the film thickness, the bound-
ary conditions on the order parameter, and the velocity
distribution in the liquid film. Our calculations show that
the exponent a spans the interval 2<a=<3Z. The ex-
ponent reaches the lower and upper bound values in the
two limiting cases, respectively, the liquidlike films with
the linear velocity distribution and the solidlike films
with the step-wise velocity distribution. For intermediate
velocity distributions, which we do not discuss in detail
here, we expect the exponent a to lie between % and 2. It
should be stressed that the exponents discussed above de-
scribe the asymptotic behavior of the effective viscosity
for high shear rates. The values found from the experi-
mental data could be smaller if the asymptotic region is
not reached during the measurements. The predicted
values of the exponent a depend on the velocity profiles,
which should be obtained in a self-consistent way from

and the film passes from the solidlike to the liquidlike
state. As a result, the effective viscosity loses its pro-
nounced dependence on the film thickness, as observed
experimentally [4]. It should be mentioned that within
our model this transition is not related to any phase tran-
sition in the system. The observation of the exponent
a~2 may indicate that the film is close to the liquidlike
state and that §>1 [see Eq. (10)]. It is important to
note that this value of the exponent has been obtained in
the region of the thicknesses where the effective viscosity
only slightly depends on the thickness that gives addi-
tional support to the above statement.

In conclusion, shear thinning is obtained in the frame-
work of the TDLG equation coupled to a velocity field
for shear rates faster than relaxation rates in the liquid.
The scaling relationship, Eq. (1), emerges naturally from
the model with a scaling exponent which depends on the
nature of the velocity field and on the boundary condi-
tions. Our results demonstrate that the thinning is
enhanced in the step-wise velocity case (a=3) relative to
the hydrodynamic, liquidlike case (a=4% or a=2). In
the liquidlike regime a dependence on surface wetting is
predicted, which should be amenable to experimental ob-
servation by changing the liquid-wall interactions. The
experimental findings of thinning with a=2Z and the
dependence 7.4 on liquid thickness concur with a possible
solidlike to liquidlike transition.
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APPENDIX

For the linear velocity distribution v(z)=V(1—z/d),
the dynamic Eq. (2) takes the following form in the
(z, K, ) representation:

88722— e G e )
XS(z,K,w0)=0. (Al)
The boundary conditions (6) and (7) transform to
a%S(z=O,K,a))=C1S(z=O,K,w)
—27h (K)§[w+(K-V)], (A2)
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S(z=d,K,0)=—C,S(z=d,K,0)=2mh,(K)8(w) .

(A3)

For the particular form of the liquid-substrate interaction
h;(R)=h sin(2my /1) considered here, the wave vector K
takes the value K=(0, 27 /1).

The solution of Eq. (A1) is expressed through the Airy
functions [15]

S(z,K,0)=D,Ai(£)+D,Bi(£) , (A4)

where

A,,(K)=[—«Bi'(&)+C,Bi(£,)]/Dt ,
A21(K):[KAl’(gz)_CzBl(gz)]/Dt ,

2)1/3 (A5)

E=—(igu g-Hg_l

The prefactors D and D, are obtained from the bound-
ary conditions (A2) and (A3):

D, =274, (K)h(K)8[w+(K-V)]

—27 4 1,(K)h,(K)d(o) , (A6)
D, =27 A5 (K)h,(K)8[w+(K-V)]
+27 4, (K)h,(K)8(o) . (A7)

Here

A,(K)]=[kBi'(§,)+C,Bi(&,)]/Dt ,
A, (K)=[Kk Ai'(£))+C,Ai(&,)]/Dt
k=[i(K-V)/(aDd)]'?, &=Ez=0)=0"'g 7 Ww)??, &=Ez=d)=—(igu®)'*[1+ig™ '],

Dt =[xk Ai'(§))+CAi(&))][ —k Bi'(§,)+C,Bi(&,)]— [ —k Ai'(&,) + C,Ai(&,) ][k Bi'(&,)+ C;Bi(&)]

and prime denotes the derivative with respect to &.

Substitution of Egs. (A4), (A6), and (A7) into Eq. (8) leads to the following expression for the frictional force

amh?

F=—
!

Im{x[| 4, (2w /D> Ai"(£))Ai* (&) +]| A, (2 /1)|*Bi'(€,)Bi* (&)

+ A% (2m/1) Ay (27 /DBI(E)AI* () + A, (27 /1) A% (2w /DAY (E))Bi* (£))]} . (A9)

Using the asymptotic expressions for the Airy functions [15] in Eq. (A9), we arrive at Eq. (10) for the effective viscosity.
Similar calculations have been carried out for the step-wise velocity distribution.
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